
Learning Assumptions for Compositional
Verification

Jamieson M. Cobleigh?1, Dimitra Giannakopoulou2, and Corina S. Păsăreanu3

1 Department of Computer Science,
University of Massachusetts, Amherst, MA 01003-9264, USA

jcobleig@cs.umass.edu
2 RIACS/USRA and 3 Kestrel Technology LLC,

NASA Ames Research Center, Moffett Field, CA 94035-1000, USA
{dimitra,pcorina}@email.arc.nasa.gov

Abstract. Compositional verification is a promising approach to ad-
dressing the state explosion problem associated with model checking.
One compositional technique advocates proving properties of a system
by checking properties of its components in an assume-guarantee style.
However, the application of this technique is difficult because it involves
non-trivial human input. This paper presents a novel framework for per-
forming assume-guarantee reasoning in an incremental and fully auto-
mated fashion. To check a component against a property, our approach
generates assumptions that the environment needs to satisfy for the prop-
erty to hold. These assumptions are then discharged on the rest of the
system. Assumptions are computed by a learning algorithm. They are
initially approximate, but become gradually more precise by means of
counterexamples obtained by model checking the component and its en-
vironment, alternately. This iterative process may at any stage conclude
that the property is either true or false in the system. We have imple-
mented our approach in the LTSA tool and applied it to a NASA system.

1 Introduction

Our work is motivated by an ongoing project at NASA Ames Research Center
on the application of model checking to the verification of autonomous soft-
ware. Autonomous software involves complex concurrent behaviors for reacting
to external stimuli without human intervention. Extensive verification is a pre-
requisite for the deployment of missions that involve autonomy.

Given some formal description of a system and of a required property, model
checking automatically determines whether the property is satisfied by the sys-
tem. The limitation of the approach, referred to as the “state explosion” prob-
lem [8], is that it needs to store the explored system states in memory, which is
impossible for most realistic systems.
? This author is grateful for the support received from RIACS to undertake this re-

search while participating in the Summer Student Research Program at the NASA
Ames Research Center.

2 Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu

Compositional verification presents a promising way of addressing state ex-
plosion. It advocates a “divide and conquer” approach where properties of the
system are decomposed into properties of its components, so that if each compo-
nent satisfies its respective property, then so does the entire system. Components
are therefore model checked separately. It is often the case, however, that com-
ponents only satisfy properties in specific contexts (also called environments).
This has given rise to the assume-guarantee style of reasoning [18, 21].

Assume-guarantee reasoning first checks whether a component M guarantees
a property P , when it is part of a system that satisfies an assumption A. Intu-
itively, A characterizes all contexts in which the component is expected to oper-
ate correctly. To complete the proof, it must also be shown that the remaining
components in the system, i.e., M ’s environment, satisfy A. Several frameworks
have been proposed [7, 16–18, 21, 24] to support this style of reasoning. How-
ever, their practical impact has been limited because they require non-trivial
human input in defining assumptions that are strong enough to eliminate false
violations, but that also reflect the remaining system appropriately.

In contrast, this paper presents a novel framework for performing assume-
guarantee reasoning in an incremental and fully automatic fashion. Our approach
iterates a process based on gradually learning assumptions. The learning process
is based on queries to component M and on counterexamples obtained by model
checking M and its environment, alternately. Each iteration may conclude that
the required property is satisfied or violated in the system analyzed. This pro-
cess is guaranteed to terminate; in fact, it converges to an assumption that is
necessary and sufficient for the property to hold in the specific system.

Our approach has been implemented in the Labeled Transition Systems An-
alyzer (LTSA) [20], and applied to the analysis of the Executive module of an
experimental Mars Rover (K9) developed at NASA Ames. We are currently in
the process of also implementing it in Java Pathfinder (JPF) [23]. In fact, as our
approach relies on standard features of model checkers, it is fairly straightforward
to add in any such tool.

The remainder of the paper is organized as follows. We first provide some
background in Section 2, followed by a high level description of the framework
that we propose in Section 3. The algorithms that implement this framework are
presented in Section 4. We discuss the applicability of our approach in practice
and extensions that we are considering in Section 5. Section 6 describes our
experience with applying our approach to the Executive of the K9 Mars Rover.
Finally, Section 7 presents related work and Section 8 concludes the paper.

2 Background

The presentation of our approach is based on techniques for modeling and check-
ing concurrent programs implemented in the LTSA tool [20]. The LTSA supports
Compositional Reachability Analysis (CRA) of a software system based on its
architecture, which, in general, has a hierarchical structure. CRA incrementally
computes and abstracts the behavior of composite components based on the

Learning Assumptions for Compositional Verification 3

20 1

sendinput

ack

Input:

0 1 2

send output

ack

Output:

0 1

input

π

output

output

input

0 1 2

send output

ack

send

Fig. 1. Example LTSs Fig. 2. Order Property Fig. 3. LTS for Output′

behavior of their immediate children in the hierarchy [13]. The flexibility that
the LTSA provides in selecting any component in the hierarchy for analysis or
abstraction makes it ideal for experimenting with our approach.

Labeled Transition Systems (LTSs). The LTSA tool uses LTSs to model the
behavior of communicating components in a concurrent system. In the following,
we present LTSs and semantics of their operators in a typical process algebra
style. However note that our goal here is not to define a process algebra.

Let Act be the universal set of observable actions and let τ denote a local
action unobservable to a component’s environment. We use π to denote a special
error state, which models the fact that a safety violation has occurred in the
associated system. We require that the error state has no outgoing transitions.
Formally, an LTS M is a four tuple 〈Q,αM, δ, q0〉 where:

– Q is a finite non-empty set of states
– αM ⊆ Act is a set of observable actions called the alphabet of M
– δ ⊆ Q× αM ∪ {τ} ×Q is a transition relation
– q0 ∈ Q is the initial state

We use Π to denote the LTS 〈{π},Act, ∅, π〉. An LTS M = 〈Q, αM, δ, q0〉 is
non-deterministic if it contains τ -transitions or if ∃(q, a, q′), (q, a, q′′) ∈ δ such
that q′ 6= q′′. Otherwise, M is deterministic.

Consider a simple communication channel that consists of two components
whose LTSs are shown in Fig. 1. Note that the initial state of all LTSs in this
paper is state 0. The Input LTS receives an input when the action input occurs,
and then sends it to the Output LTS with action send. After some data is sent
to it, Output produces output using the action output and acknowledges that
it has finished, by using the action ack. At this point, both LTSs return to their
initial states so the process can be repeated.

Traces. A trace σ of an LTS M is a sequence of observable actions that M can
perform starting at its initial state. For example, 〈input〉 and 〈input, send〉 are
both traces of the Input LTS in Fig. 1. The set of all traces of M is called the
language of M , denoted L (M). For Σ ⊆ Act, we use σ � Σ to denote the trace
obtained by removing from σ all occurrences of actions a /∈ Σ.

4 Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu

Parallel Composition. Let M = 〈Q,αM, δ, q0〉 and M ′ = 〈Q′, αM ′, δ′, q′0〉.
We say that M transits into M ′ with action a, denoted M

a−→ M ′, if and only
if (q0, a, q′0) ∈ δ and either Q = Q′, αM = αM ′, and δ = δ′ for q′0 6= π, or, in the
special case where q′0 = π, M ′ = Π.

The parallel composition operator ‖ is a commutative and associative opera-
tor that combines the behavior of two components by synchronizing the actions
common to their alphabets and interleaving the remaining actions. For example,
in the parallel composition of the Input and Output components from Fig. 1,
actions send and ack will each be synchronized.

Formally, let M1 = 〈Q1, αM1, δ
1, q1

0〉 and M2 = 〈Q2, αM2, δ
2, q2

0〉 be two
LTSs. If M1 = Π or M2 = Π, then M1 ‖ M2 = Π. Otherwise, M1 ‖ M2 is an
LTS M = 〈Q,αM, δ, q0〉, where Q = Q1 ×Q2, q0 = (q1

0 , q2
0), αM = αM1 ∪ αM2,

and δ is defined as follows, where a is either an observable action or τ (note that
the symmetric rules are implied by the fact that the operator is commutative):

M1
a−→ M ′

1, a /∈ αM2

M1 ‖ M2
a−→ M ′

1 ‖ M2

M1
a−→ M ′

1, M2
a−→ M ′

2, a 6= τ

M1 ‖ M2
a−→ M ′

1 ‖ M ′
2

Properties. We call a deterministic LTS that contains no π states a safety
LTS. A safety property is specified as a safety LTS P , whose language L (P)
defines the set of acceptable behaviors over αP . An LTS M satisfies P , denoted
as M |= P , if and only if ∀σ ∈ L (M) : (σ � αP) ∈ L (P).

When checking a property P , an error LTS denoted Perr is created, which
traps possible violations with the π state. Formally, the error LTS of a property
P = 〈Q,αP, δ, q0〉 is Perr = 〈Q ∪ {π}, αPerr, δ

′, q0〉, where αPerr = αP and

δ′ = δ ∪ {(q, a, π) | a ∈ αP and @q′ ∈ Q : (q, a, q′) ∈ δ}

Note that the error LTS is complete, meaning each state other than the error
state has outgoing transitions for every action in the alphabet.

For example, the Order property shown in Fig. 2 captures a desired behavior
of the communication channel shown in Fig. 1. The property comprises states 0, 1
and the transitions denoted by solid arrows. It expresses the fact that inputs and
outputs come in matched pairs, with the input always preceding the output.
The dashed arrows illustrate the transitions to the error state that are added to
the property to obtain its error LTS.

To detect violations of property P by component M , the parallel composition
M ‖ Perr is computed. It has been proved that M violates P if and only if the
π state is reachable in M ‖ Perr [5]. For example, state π is not reachable in
Input ‖ Output ‖ Ordererr, so we conclude that Input ‖ Output |= Order.

Assume-Guarantee Reasoning. In the assume-guarantee paradigm a for-
mula is a triple 〈A〉 M 〈P 〉, where M is a component, P is a property, and A is
an assumption about M ’s environment [21]. The formula is true if whenever M
is part of a system satisfying A, then the system must also guarantee P .

Learning Assumptions for Compositional Verification 5

The LTSA is particularly flexible in performing assume-guarantee reasoning.
Both assumptions and properties are defined as safety LTSs4. In fact, a safety
LTS A can be used as an assumption or as a property. To be used as an as-
sumption for module M , A itself is composed with M , thus playing the role of
an abstraction of M ’s environment. To be used as a property to be checked on
M , A is turned into Aerr and then composed with M .

To check an assume-guarantee formula 〈A〉 M 〈P 〉, where both A and P are
safety LTSs, the LTSA computes A ‖ M ‖ Perr and checks if state π is reachable
in the composition. If it is, then 〈A〉 M 〈P 〉 is violated, otherwise it is satisfied.

Deterministic Finite State Automata (DFAs) and Safety LTSs. One
of the components of our framework is a learning algorithm that produces
DFAs, which our framework then uses as safety LTSs. A DFA M is a five tuple
〈Q,αM, δ, q0, F 〉 where Q,αM, δ, and q0 are defined as for deterministic LTSs,
and F ⊆ Q is a set of accepting states.

For a DFA M and a string σ, we use δ(q, σ) to denote the state that M
will be in after reading σ starting at state q. A string σ is said to be accepted
by a DFA M = 〈Q,αM, δ, q0, F 〉 if δ(q0, σ) ∈ F . The language accepted by M ,
denoted L (M) is the set {σ | δ(q0, σ) ∈ F}.

The DFAs returned by the learning algorithm in our context are complete,
minimal, and prefix-closed (an automaton M is prefix-closed if L (M) is prefix-
closed, i.e., for every σ ∈ L (M), every prefix of σ is also in L (M)). These DFAs
therefore contain a single non-accepting state. They can easily be transformed
into safety LTSs by removing the non-accepting state, which corresponds to state
π of an error LTS, and all transitions that lead into it.

3 Framework for Incremental Compositional Verification

Consider the case where a system is made up of two components, M1 and M2.
As mentioned in the previous section, a formula 〈A〉 M 〈P 〉 is true if, whenever
M is part of a system satisfying A, then the system must also guarantee prop-
erty P . The simplest compositional proof rule shows that if 〈A〉 M1 〈P 〉 and
〈true〉 M2 〈A〉 hold, then 〈true〉 M1 ‖ M2 〈P 〉 is true. This proof strategy can
also be expressed as an inference rule as follows:

(Step 1) 〈A〉 M1 〈P 〉
(Step 2) 〈true〉 M2 〈A〉

〈true〉 M1 ‖ M2 〈P 〉

Note that this rule is not symmetric in its use of the two components, and
does not support circularity. Despite its simplicity, our experience with applying
compositional verification to several applications has shown it to be the most
useful rule in the context of checking safety properties. For the use of the com-
positional rule to be justified, the assumption must be more abstract than M2,
4 Any LTS without π states can be transformed into a safety LTS by determinization.

6 Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu

Analysis

true

false
counterexample

(Step 1) <P>M1A i< >

(Step 2) <true> 2M A i< >

A i

counterexample − weaken assumption

counterexample − strengthen assumption

Assumption

Model checking

false

true
true

false

Generation
Assumption

Fig. 4. Incremental compositional verification during iteration i

but still reflect M2’s behavior. Additionally, an appropriate assumption for the
rule needs to be strong enough for M1 to satisfy P in Step 1. Developing such
an assumption is a non-trivial process.

To obtain appropriate assumptions, our framework applies the compositional
rule in an iterative fashion as illustrated in Fig. 4. At each iteration i, an as-
sumption Ai is provided based on some knowledge about the system and on the
results of the previous iteration. The two steps of the compositional rule are then
applied. Step 1 is applied first, to check whether M1 guarantees P in environ-
ments that satisfy Ai. If the result is false, it means that this assumption is too
weak, i.e., Ai does not restrict the environment enough for P to be satisfied. The
assumption therefore needs to be strengthened (which corresponds to removing
behaviors from it) with the help of the counterexample produced by Step 1. In
the context of the next assumption Ai+1, component M1 should at least not
exhibit the violating behavior reflected by this counterexample.

If Step 1 returns true, it means that Ai is strong enough for the property to
be satisfied. To complete the proof, Step 2 must be applied to discharge Ai on
M2. If Step 2 returns true, then the compositional rule guarantees that P holds
in M1 ‖ M2. If it returns false, further analysis is required to identify whether
P is indeed violated in M1 ‖ M2 or whether Ai is stronger than necessary. Such
analysis is based on the counterexample returned by Step 2. If Ai is too strong
it must be weakened (i.e., behaviors must be added) in iteration i+1. The result
of such weakening will be that at least the behavior that the counterexample
represents will be allowed by assumption Ai+1. The new assumption may of
course be too weak, and therefore the entire process must be repeated.

To implement this iterative, incremental process in a fully automated way,
our framework uses a learning algorithm for assumption generation and a model
checker for the application of the two steps in the compositional rule. The learn-
ing algorithm is described in detail in the next section.

Learning Assumptions for Compositional Verification 7

(1) let S = E = {λ}
loop {

(2) Update T using queries
while (S, E, T) is not closed {

(3) Add sa to S to make S closed where s ∈ S and a ∈ Σ
(4) Update T using queries

}
(5) Construct candidate DFA C from (S, E, T)
(6) Make the conjecture C
(7) if C is correct return C

else
(8) Add e ∈ Σ∗ that witnesses the counterexample to E

}

Fig. 5. The L* Algorithm

4 Algorithms

4.1 The L* Algorithm

The learning algorithm used by our approach was developed by Angluin [3]
and later improved by Rivest and Schapire [22]. In this paper, we will refer to
the improved version by the name of the original algorithm, L*. L* learns an
unknown regular language and produces a DFA that accepts it. Let U be an
unknown regular language over some alphabet Σ. In order to learn U , L* needs
to interact with a Minimally Adequate Teacher, from now on called Teacher. A
Teacher must be able to correctly answer two types of questions from L*. The
first type is a membership query, consisting of a string σ ∈ Σ∗; the answer is true
if σ ∈ U , and false otherwise. The second type of question is a conjecture, i.e., a
candidate DFA C whose language the algorithm believes to be identical to U . The
answer is true if L (C) = U . Otherwise the Teacher returns a counterexample,
which is a string σ in the symmetric difference of L (C) and U .

At a higher level, L* creates a table where it incrementally records whether
strings in Σ∗ belong to U . It does this by making membership queries to the
Teacher. At various stages L* decides to make a conjecture. It constructs a
candidate automaton C based on the information contained in the table and asks
the Teacher whether the conjecture is correct. If it is, the algorithm terminates.
Otherwise, L* uses the counterexample returned by the Teacher to extend the
table with strings that witness differences between L (C) and U .

In the following more detailed presentation of the algorithm, line numbers
refer to L*’s illustration in Fig. 5. L* builds an observation table (S, E, T) where
S and E are a set of prefixes and suffixes, respectively, both over Σ∗. In addition,
T is a function mapping (S ∪S ·Σ) ·E to {true, false}, where the operator “·” is
defined as follows. Given two sets of event sequences P and Q, P ·Q = {pq | p ∈
P and q ∈ Q}, where pq represents the concatenation of the event sequences p
and q. Initially, L* sets S and E to {λ} (line 1), where λ represents the empty

8 Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu

string. Subsequently, it updates the function T by making membership queries
so that it has a mapping for every string in (S∪S ·Σ) ·E (line 2). It then checks
whether the observation table is closed, i.e., whether

∀s ∈ S,∀a ∈ Σ,∃s′ ∈ S,∀e ∈ E : T (sae) = T (s′e)

If (S, E, T) is not closed, then sa is added to S where s ∈ S and a ∈ Σ are the
elements for which there is no s′ ∈ S (line 3). Once sa has been added to S, T
needs to be updated (line 4). Lines 3 and 4 are repeated until (S, E, T) is closed.

Once the observation table is closed, a candidate DFA C = 〈Q, αC, δ, q0, F 〉
is constructed (line 5), with states Q = S, initial state q0 = λ, and alphabet
αC = Σ, where Σ is the alphabet of the unknown language U . The set F
consists of the states s ∈ S such that T (s) = true. The transition relation δ is
defined as δ(s, a) = s′ where ∀e ∈ E : T (sae) = T (s′e). Such an s′ is guaranteed
to exist when (S, E, T) is closed. The DFA C is presented as a conjecture to the
Teacher (line 6). If the conjecture is correct, i.e., if L (C) = U , L* returns C as
correct (line 7), otherwise it receives a counterexample c ∈ Σ∗ from the Teacher.

The counterexample c is analyzed by L* to find a suffix e of c that witnesses
a difference between L (C) and U ; e must be such that adding it to E will cause
the next conjectured automaton to reflect this difference5 (line 8). Once e has
been added to E, L* iterates the entire process by looping around to line 2.

Characteristics of L*. L* is guaranteed to terminate with a minimal automa-
ton M for the unknown language U . Moreover, for each closed observation table
(S, E, T), the candidate DFA C that L* constructs is smallest, in the sense that
any other DFA consistent6 with the function T has at least as many states as
C. This characteristic of L* makes it particularly attractive for our framework.
The conjectures made by L* strictly increase in size; each conjecture is smaller
than the next one, and all incorrect conjectures are smaller than M . Therefore,
if M has n states, L* makes at most n− 1 incorrect conjectures. The number of
membership queries made by L* is O

(
kn2 + n log m

)
, where k is the size of the

alphabet of U , n is the number of states in the minimal DFA for U , and m is
the length of the longest counterexample returned when a conjecture is made.

4.2 Learning for Assume-Guarantee Reasoning

Assume a system M1 ‖ M2, and a property P that needs to be satisfied in
the system. In the context of the compositional rule presented in Section 3, the
learning algorithm is called to guess an assumption that can be used in the rule
to prove or disprove P . An assumption with which the rule is guaranteed to
return conclusive results is the weakest assumption Aw under which M1 satisfies
P . Assumption Aw describes exactly those traces over Σ = (αM1 ∪ αP) ∩ αM2

5 The procedure for finding e is beyond the scope of this paper, but is described in [22].
6 A DFA C is consistent with function T if, for every σ in (S ∪ S · Σ) · E, σ ∈ L (C)

if and only if T (σ) = true.

Learning Assumptions for Compositional Verification 9

which, when simulated on M1 ‖ Perr cannot lead to state π. The language L (Aw)
of the assumption contains at least all traces of M2 abstracted to Σ that prevent
M1 from violating P . Formally, Aw is such that, for any environment component
ME , 〈true〉 M1 ‖ ME 〈P 〉 if and only if 〈true〉 ME 〈Aw〉 [14].

In our framework, L* learns the traces of Aw through the iterative process
described in Section 3. The process terminates as soon as compositional verifi-
cation returns conclusive results, which is often before the weakest assumption
Aw is computed by L*. For L* to learn Aw, we need to provide a Teacher that is
able to answer the two different kinds of questions that L* asks. Our approach
uses model checking to implement such a Teacher.

Membership Queries. To answer a membership query for σ = 〈a1, a2, . . . , an〉
in Σ∗ the Teacher simulates the query on M1 ‖ P . For clarity of presenta-
tion we will reduce such simulations to model checking, although we have im-
plemented them more efficiently, directly as simulations. So for string σ, the
Teacher first builds Aσ = 〈Q,αAσ, δ, q0〉 where Q = {q0, q1, . . . , qn}, αAσ = Σ,
δ = {(qi, ai+1, qi+1) | 0 ≤ i < n}, and q0 = q0. The Teacher then model checks
〈Aσ〉 M1 〈P 〉. If true is returned, it means that σ ∈ L (Aw), because M1 does
not violate P in the context of σ, so the Teacher returns true. Otherwise, the
answer to the membership query is false.

Conjectures. Due to the fact that in our case the language L (Aw) that is being
learned is prefix-closed, all conjectures returned by L* are also prefix-closed.
Our framework transforms these conjectures into safety LTSs (see Section 2),
which constitute the intermediate assumptions Ai. In our framework, the first
priority is to guide L* towards a conjecture that is strong enough to make Step 1
of the compositional rule return true. Once this is accomplished, the resulting
conjecture may be too strong, in which case our framework guides L* towards a
conjecture that is weak enough to make Step 2 return conclusive results about
whether the system satisfies P . The way the Teacher that we have implemented
reflects this approach is by using two oracles and counterexample analysis to
answer conjectures as follows.

Oracle 1 performs Step 1 in Fig. 4, i.e., it checks 〈Ai〉 M1 〈P 〉. If this does
not hold, the model checker returns a counterexample c. The Teacher informs
L* that its conjecture Ai is not correct and provides c � Σ to witness this fact.
If, instead, 〈Ai〉 M1 〈P 〉 holds, the Teacher forwards Ai to Oracle 2.

Oracle 2 performs Step 2 in Fig. 4 by checking 〈true〉 M2 〈Ai〉. If the result of
model checking is true, the teacher returns true. Our framework then terminates
the verification because, according to the compositional rule, P has been proved
on M1 ‖ M2. If model checking returns a counterexample, the Teacher performs
some analysis to determine the underlying reason (see Section 3 and Fig. 4).

Counterexample analysis is performed by the Teacher in a way similar to that
used for answering membership queries. Let c be the counterexample returned
by Oracle 2. The Teacher computes Ac�Σ and checks 〈Ac�Σ〉 M1 〈P 〉. If true,
it means that Ai is too strong since M1 does not violate P in the context of

10 Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu

Table 1. Mapping T1

E1

T1 λ

S1 λ true
output false

ack true
output false

S1 · Σ send true
output, ack false
output, output false
output, send false

Table 2. Mapping T2

E2

T2 λ ack

λ true true
S2 output false false

send true false

ack true true
output false false
send true false
output, ack false false

S2 · Σ output, output false false
output, send false false
send, ack false false
send, output true true
send, send true true

0 send
ack 0 ack 1

send

output
send

0 1
output

ack
output
send

2

ack send

send

0 1 2

ack

outputsend

3

ack
output
send

sendack
send

Fig. 6. A1 Fig. 7. A2 Fig. 8. A3 Fig. 9. A4

c, and c � Σ is returned as a counterexample for conjecture Ai. If the model
checker returns false with some counterexample c′, it means that P is violated in
M1 ‖ M2. To generate a counterexample for 〈true〉 M1 ‖ M2 〈P 〉 our framework
composes c and c′ in a way similar to the parallel composition of LTSs. That is,
common actions in c and c′ are synchronized and some interleaving instance of
the remaining actions is selected.

4.3 Example

Given components Input and Output as shown in Fig. 1 and the property Order
shown in Fig. 2, we will check 〈true〉 Input ‖ Output 〈Order〉 by using our
approach. The alphabet of the assumptions that will be used in the compositional
rule is Σ = ((αInput ∪ αOrder) ∩ αOutput) = {send, output, ack}.

As described, at each iteration L* updates its observation table and pro-
duces a candidate assumption whenever the table becomes closed. The first
closed table obtained is shown in Table 1 and its associated assumption, A1, is
shown in Fig. 6. The Teacher answers conjecture A1 by first invoking Oracle 1,
which checks 〈A1〉 Input 〈Order〉. Oracle 1 returns false, with counterexample

Learning Assumptions for Compositional Verification 11

σ = 〈input, send, ack, input〉, which describes a trace in A1 ‖ Input ‖ Ordererr

that leads to state π.
The Teacher therefore returns counterexample σ � Σ = 〈send, ack〉 to L*,

which uses queries to update its observation table until it is closed. From this
table, shown in Table 2, the assumption A2, shown in Fig. 7, is constructed and
conjectured to the Teacher. This time, Oracle 1 reports that 〈A2〉 Input 〈Order〉
is true, meaning the assumption is not too weak. The Teacher calls Oracle 2 to
determine if 〈true〉 Output 〈A2〉. This is also true, so our algorithm reports that
〈true〉 Input ‖ Output 〈Order〉 holds.

This example did not involve weakening of the assumptions produced by
L*, since the assumption A2 was sufficient for the compositional proof. This
will not always be the case. For example, let us substitute Output by Output′

illustrated in Fig. 3, which allows multiple send actions to occur before producing
output. The verification process will be identical to the previous case, until
Oracle 2 is invoked by the Teacher for conjecture A2. Oracle 2 returns that
〈true〉 Output′ 〈A2〉 is false, with counterexample 〈send, send, output〉. The
Teacher analyzes this counterexample and determines that in the context of this
trace, Input does not violate Order. The trace is returned to L*, which will
weaken the conjectured assumption. The process involves two more iterations,
during which assumptions A3 (Fig. 8) and A4 (Fig. 9), are produced. Using A4,
which is the weakest assumption Aw, both Oracles report true, so our framework
reports that 〈true〉 Input ‖ Output′ 〈Order〉 holds.

5 Discussion

5.1 Correctness

Theorem 1. Given components M1 and M2, and property P , the algorithm
implemented by our framework terminates and it returns true if P holds on
M1 ‖ M2 and false otherwise.

Proof. To prove the theorem we will first argue correctness of our approach, and
then the fact that it terminates.

Correctness: The Teacher in our framework uses the two steps of the compo-
sitional rule to answer conjectures. It only returns true when both steps return
true, and therefore correctness is guaranteed by the compositional rule. Our
framework reports an error when it detects a trace σ of M2 which, when simu-
lated on M1, violates the property, which implies that M1 ‖ M2 violates P .

Termination: At any iteration, our algorithm returns true or false and termi-
nates, or continues by providing a counterexample to L*. By correctness of L*,
we are guaranteed that if it keeps receiving counterexamples, it will eventually,
at some iteration i, produce Aw. During this iteration, Step 1 will return true
by definition of Aw. The Teacher will therefore apply Step 2, which will return
either true and terminate, or a counterexample. This counterexample represents
a trace of M2 that is not contained in L(Aw). Since, as discussed in Section 4,
Aw is both necessary and sufficient, analysis of the counterexample will return
false, and the algorithm will terminate. �

12 Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu

5.2 Practical Considerations

In our context, the languages queried by L* are prefix-closed. This is because
our technique applies to purely safety properties; any finite prefix of a trace
that satisfies such a property must also satisfy the property. Therefore, when
for some string σ a membership query 〈Aσ〉 M1 〈P 〉 returns false, we know that
for any extension of σ the answer will also be false. We can thus improve the
efficiency of the algorithm by reducing the cost of some of the membership queries
that are answered by the Teacher. For example, in the observation table shown
in Table 1, the entry for 〈output〉 is false. The Teacher can return false for the
queries 〈output, ack〉, 〈output, send〉, and 〈output, output〉 without invoking
the model checker.

In our framework, membership queries, conjectures, and counterexample
analysis all involve model checking, which is performed on-the-fly. The assump-
tions that are used in these steps are increasing in size, and grow no larger
than the size of Aw. In our experience, for well-designed systems, the interfaces
between components are small. Therefore, assumptions are expected to be sig-
nificantly smaller than the environment that they represent in the compositional
rules. Although L* needs to maintain an observation table, this table does not
need to be kept in memory while the model checking is performed.

Note that our framework provides an “any time” [11] approach to composi-
tional verification. If memory is not sufficient to reach termination, intermediate
assumptions are generated, which may be useful in approximating the require-
ments that a component places on its environment to satisfy certain properties.

5.3 Extensions

Generalization. Our approach has been presented in the context of two com-
ponents. Assume now that a system consists of n components M1 ‖ · · · ‖ Mn.
The simplest way to generalize our approach is to group these components into
two higher level components, and apply the compositional rules as already dis-
cussed. Another possibility is to handle the general case without computing the
composition of any components directly. Our algorithm provides a way of check-
ing 〈true〉 M1 ‖ M2 〈P 〉 in a compositional way. If M2 consists of more than
one component, our algorithm could be applied recursively for Step 2. This is an
interesting future direction, in particular since the membership queries concen-
trate on a single component at a time. However, we need to further investigate
how meaningful such an approach would be in practice.

Computing the Weakest Assumption. L* can also be used to learn the
weakest possible assumption Aw that will prevent a component M1 from violat-
ing a property P . This assumption will be generated without knowing M2, the
component M1 interacts with. The only place in our assume-guarantee frame-
work where M2 is used is in Oracle 2, when the Teacher tries to determine if
the Assumption generated is too strong. Oracle 2 can be replaced by a confor-
mance checker, for example the W-Method [6], which is designed to expose a

Learning Assumptions for Compositional Verification 13

Table 3. Results for the Rover Example

Iteration |Ai| States Transitions Result

1 - Oracle 1 1 5 24 Too weak

2 - Oracle 1 2 268 1, 408 Too weak

3 - Oracle 1 3 235 1, 209 Too weak

4 - Oracle 1 5 464 2, 500 Not too weak

4 - Oracle 2 5 32 197 False

difference between a specification and an implementation. This will produce a
set of sequences that are guaranteed to expose an error in the conjectured as-
sumption if one exists. The sequence of intermediate assumptions conjectured
by the Teacher are approximate and become more refined the longer L* runs.
As discussed before, approximate assumptions can still be useful.

6 Experience

We implemented the assume-guarantee framework described above in the LTSA
tool, and experimented with our approach in the analysis of a design-level model
of the executive subsystem for the K9 Mars Rover, developed at NASA Ames.
The executive is a multi-threaded system that receives plans from a Planner,
which it executes according to a plan language semantics.

We used our framework to check one property that refers to a subsystem of
the executive consisting of two components: the main coordinating component
named Executive, and a component responsible for monitoring state conditions
named ExecCondChecker. The property states that for a specific variable of the
ExecCondChecker shared with the Executive, if the Executive reads the value of
the variable, then the ExecCondChecker should not read this value before the
Executive clears it first. We set M1 = ExecCondChecker and M2 = Executive.
The experiment was conducted on a Pentium III 500 MHz with 1 Gb of memory
running RedHat Linux 7.2 using Sun’s Java SDK version 1.4.0 01. To check
the property directly by composing the two modules with the property required
searching 3,630 states and 34,653 transitions.

Table 3 shows the results of using our framework on this example. The |Ai|
column gives the number of states of the assumptions generated. The table also
shows the number of states and transitions explored during the analysis of the
assumption. In iterations 1-3, Oracle 1 determined that the learned assumptions
were too weak. In iteration 4, the learned assumption was not too weak so it
was given to Oracle 2, which returned a counterexample. When simulated on
the ExecCondChecker, this counterexample led to an error state. The analysis
therefore concluded that the property does not hold.

The largest state space involved in the application of our approach was ex-
plored by Oracle 1 during iteration 4, and consisted of 464 states and 2,500
transitions. This is approximately one order of magnitude smaller than the state
space explored when checking the property directly on M1 ‖ M2. On the other

14 Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu

hand, our approach took 8.639 seconds as compared to 0.535 seconds for check-
ing the property directly. This is due to the iterative learning of assumptions.
However, we believe that the potential benefits of our approach in terms of
memory outweigh the time overhead that it may incur. Our experimental work
is of course preliminary, and we are planning to carry out larger case studies to
validate our approach.

7 Related Work

One way of addressing both the design and verification of large systems is to
use their natural decomposition into components. Formal techniques for support
of component-based design are gaining prominence, see for example [9, 10]. In
order to reason formally about components in isolation, some form of assumption
(either implicit or explicit) about the interaction with, or interference from, the
environment has to be made. Even though we have sound and complete reasoning
systems for assume-guarantee reasoning, see for example [7, 16, 18, 21, 24], it is
always a mental challenge to obtain the most appropriate assumption [17].

It is even more of a challenge to find automated techniques to support this
style of reasoning. The thread modular reasoning underlying the Calvin tool [12]
is one start in this direction. In the framework of temporal logic, the work on
Alternating-time Temporal Logic ATL [1] was proposed for the specification
and verification of open systems together with automated support via symbolic
model checking procedures. The Mocha toolkit [2] provides support for modular
verification of components with requirement specifications based on the ATL.

In previous work [14], we presented an algorithm for automatically generating
the weakest possible assumption for a component to satisfy a required property.
Although the motivation of that work is different, the ability to generate the
weakest assumption can also be used to automate assume-guarantee reasoning.
The algorithm in [14] does not compute partial results, meaning no assumption
is obtained if the computation runs out of memory. This may happen if the
state space of the component is too large. The approach presented here gen-
erates assumptions incrementally and may terminate before Aw is computed.
Moreover, even if it runs out of memory before reaching conclusive results, in-
termediate assumptions may be used to give some indication to the developer of
the requirements that the component places on its environment.

The problem of generating an assumption for a component is similar to the
problem of generating component interfaces to deal with intermediate state ex-
plosion in CRA. Several approaches have been defined for automatically abstract-
ing a component’s environment to obtain interfaces [4, 19]. These approaches do
not address the issue of incrementally refining interfaces, as needed for carrying
out an assume-guarantee proof.

Learning in the context of model checking has also been investigated in [15],
but with a different goal. In that work, the L* Algorithm is used to generate
a model of a software system which can then be fed to a model checker. A
conformance checker determines if the model accurately describes the system.

Learning Assumptions for Compositional Verification 15

8 Conclusions

Although theoretical frameworks for sound and complete assume-guarantee rea-
soning have existed for decades, their practical impact has been limited because
they involve non-trivial human interaction. In this paper, we presented a novel
approach to performing such reasoning in a fully automatic fashion. Our ap-
proach uses a learning algorithm to generate and refine assumptions based on
queries and counterexamples, in an iterative process. The process is guaranteed
to terminate, and return true if a property holds in a system, and a counterex-
ample otherwise. If memory is not sufficient to reach termination, intermediate
assumptions are generated, which may be useful in approximating the require-
ments that a component places on its environment to satisfy certain properties.

One advantage of our approach is its generality. It relies on standard features
of model checkers, and could therefore easily be introduced in any such tool.
For example, we are currently in the process of implementing it in JPF for
the analysis of Java code. The architecture of our framework is modular, so its
components can easily be substituted by more efficient ones. To evaluate how
useful our approach is in practice, we are planning its extensive application to
real systems. However, our early experiments provide strong evidence in favor
of this line of research.

In the future, we plan to investigate a number of topics including whether the
learning algorithm can be made more efficient in our context; whether different
algorithms would be more appropriate for generating the assumptions; whether
we could benefit by querying a component and its environment at the same time
or by implementing more powerful compositional rules. An interesting challenge
will also be to extend the types of properties that our framework can handle to
include liveness, fairness, and timed properties.

Acknowledgments

The authors would like to thank Alex Groce for his help with the L* Algorithm,
Willem Visser and Flavio Lerda for their help with JPF, and Zhendong Su and
the anonymous referees for useful comments.

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Compositionality: The Significant Difference - An International Symposium, 1997.

2. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and
S. Tasiran. MOCHA: Modularity in model checking. In Proc. of the 10th Int.
Conf. on Computer-Aided Verification, pages 521–525, June 28–July 2, 1998.

3. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, Nov. 1987.

4. S. C. Cheung and J. Kramer. Context constraints for compositional reachability
analysis. ACM Transactions on Software Engineering and Methodology, 5(4):334–
377, Oct. 1996.

16 Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu

5. S. C. Cheung and J. Kramer. Checking safety properties using compositional
reachability analysis. ACM Transactions on Software Engineering and Methodol-
ogy, 8(1):49–78, Jan. 1999.

6. T. S. Chow. Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering, SE-4(3):178–187, May 1978.

7. E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In
Proc. of the 4th Symp. on Logic in Computer Science, pages 353–362, June 1989.

8. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
9. L. de Alfaro and T. A. Henzinger. Interface automata. In Proc. of the 8th European

Software Engineering Conf. held jointly with the 9th ACM SIGSOFT Symp. on the
Foundations of Software Engineering, pages 109–120, Sept. 2001.

10. L. de Alfaro and T. A. Henzinger. Interface theories for component-based design.
In Proc. of the 1st Int. Workshop on Embedded Software, pages 148–165, Oct. 2001.

11. T. Dean and M. S. Boddy. An analysis of time-dependent planning. In Proc. of
the 7th National Conf. on Artificial Intelligence, pages 49–54, Aug. 1988.

12. C. Flanagan, S. N. Freund, and S. Qadeer. Thread-modular verification for shared-
memory programs. In Proc. of the 11th European Symp. on Programming, pages
262–277, Apr. 2002.

13. D. Giannakopoulou, J. Kramer, and S. C. Cheung. Behaviour analysis of dis-
tributed systems using the Tracta approach. Automated Software Engineering,
6(1):7–35, July 1999.

14. D. Giannakopoulou, C. S. Păsăreanu, and H. Barringer. Assumption generation
for software component verification. In Proc. of the 17th IEEE Int. Conf. on
Automated Software Engineering, Sept. 2002.

15. A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In Proc. of
the 8th Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems, pages 357–370, Apr. 2002.

16. O. Grumberg and D. E. Long. Model checking and modular verification. In Proc.
of the 2nd Int. Conf. on Concurrency Theory, pages 250–265, Aug. 1991.

17. T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You assume, we guarantee:
Methodology and case studies. In Proc. of the 10th Int. Conf. on Computer-Aided
Verification, pages 440–451, June 28–July 2, 1998.

18. C. B. Jones. Specification and design of (parallel) programs. In R. Mason, editor,
Information Processing 83: Proc. of the IFIP 9th World Congress, pages 321–332.
IFIP: North Holland, 1983.

19. J.-P. Krimm and L. Mounier. Compositional state space generation from Lotos
programs. In Proc. of the 3rd Int. Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, pages 239–258, Apr. 1997.

20. J. Magee and J. Kramer. Concurrency: State Models & Java Programs. John
Wiley & Sons, 1999.

21. A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In K. Apt, editor, Logic and Models of Concurrent Systems, volume 13,
pages 123–144, New York, 1984. Springer-Verlag.

22. R. L. Rivest and R. E. Schapire. Inference of finite automata using homing se-
quences. Information and Computation, 103(2):299–347, Apr. 1993.

23. W. Visser, K. Havelund, G. Brat, and S.-J. Park. Model checking programs. In
Proc. of the 15th IEEE Int. Conf. on Automated Software Engineering, Sept. 2000.

24. Q. Xu, W. P. de Roever, and J. He. The rely-guarantee method for verifying shared
variable concurrent programs. Formal Aspects of Computing, 9(2):149–174, 1997.

